Album	Album
-------	-------

Album Album

1. Konfiguracja IP w systemach MS Windows
Odczytaj konfigurację oraz zyidentyfikuj adresy IP i MAC karty eth0 poleceniem
ipconfig /all
Wyłącz dynamicznie przydzieloną konfigurację.
ipconfig /release
Pobierz ponownie konfigurację z serwera DHCP.
ipconfig /renew
Na jaki przedział czasu serwer DHCP przydziela konfigurację?

1.1.Ręczna konfiguracja ustawień sieciowych (192.168.g.k/24; brama 192.168.g.254) Ustaw adres IP, maskę sieci i bramę.

netsh

Ustaw podstawowy i zapasowy server DNS (153.19.48.1, 153.19.250.100)

netsh set

netshadd

Odczytaj konfigurację

ipconfig /all

Odczytaj tablicę routingu

route print

Sprawdź działanie łączności z pozostałymi członkami grupy poleceniem ping.

ping 192.168.g.k1 ping 192.168.g.k2

Sprawdź dostęp do Internetu

ping wp.pl

Przywróć konfigurację automatyczną przydzielaną przez serwer DHCP

netshaddress

netsh dns

TU PREZENTUJEMY KONFIGURACJĘ PROWADZĄCEMU (ipconfig /all)

2. Konfiguracja IP w systemach Linux

Uwaga: Konfigurację systemów Linux przeprowadzamy używając dystrybucji LiveCD.

Sprawdź konfigurację interfejsów sieciowych.

ifconfig

Zapamiętaj nazwę interfejsu, do którego przypisany jest adres 10.1.1.k. Tej nazwy należy używać w dalszych poleceniach w miejsce eth0. Sprawdź wpisy w tablicy routingu.

route

Sprawdź konfigurację przypisaną przez klienta usługi DHCP.

cat /var/lib/NetworkManager/dhclient*.lease
Wyłącz klienta usługi DHCP i usuń przypisaną konfigurację.

killall NetworkManager killall dhclient ip addr flush dev eth0 rm -f /etc/resolv.conf

2.1.Ręczna konfiguracja interfejsów (192.168.g.k/24)

ifconfig

Sprawdź łączność z pozostałymi członkami grupy poleceniem ping.

ping 192.168.g.k1 ping 192.168.g.k2

itd. Sprawdź wpisy tablicy sąsiedztwa protokołu ARP.

arp

Ile różnych typów (producentów) kart sieciowych jest używanych w grupie? Sprawdź łączność z Internetem.

ping wp.pl

Błąd: Nieznany host - nie jest jeszcze skonfigurowany adres serwera usługi DNS. Wykonaj kolejną próbę posługując się adresem IP.

ping 212.77.100.101

Błąd: Nie jest jeszcze skonfigurowany routing.

2.2.Ręczna konfiguracja routingu (brama 192.168.g.254) Sprawdź łączność z bramą.

ping 192.168.g.254

Ustaw domyślną bramę (uwaga: proszę użyć składni ze słowem default)

route

Czytając numerycznie tablicę routing **route** –**n** można zauważyć, że domyślna brama to brama do sieci 0.0.0.0 przy masce 0.0.0.0 Poprawna jest zatem też składnia:

route add -net 0.0.0.0 netmask 0.0.0.0 gw 192.168.g.254

Sprawdź łączność ze światem:

ping 212.77.100.101

2.3.Konfiguracja DNSów

Adresy serwerów DNS są przechowywane w pliku konfiguracyjnym /etc/resolv.conf w kolejnych liniach poprzedzone napisem nameserver

np. nameserver 153.19.48.1

Przed konfiguracją proszę sprawdzić, który z poniższych DNSów odpowiada najszybciej i wybrać go jako podstawowy (pierwszy w pliku):

10.1.0.1 153.19.250.100 8.8.8.8 Przykład:

time nslookup wp.pl 10.1.0.1

Który z serwerów DNS odpowiada najszybciej?

2.4. Wpływ awarii podstawowego serwera DNS na szybkość pracy Internetu

1. Otwórz dowolny portal w przeglądarce obserwując szybkość ładowania strony np. onet.pl, wp.pl albo interia.pl.

2. Zasymuluj awarię podstawowego serwera DNS poprzez zmianę pierwszego wpisu nameserver w pliku /etc/resolv.conf np. na nameserver 153.19.48.173. Drugi wpis w pliku powinien wskazywać na sprawny zapasowy serwer DNS.

3. Ponownie otwórz stronę z pkt.1 obserwując szybkość ładowania strony

Jaki jest przybliżony czas pełnego załadowania strony np. wp.pl?

Uwaga: Tu może być potrzebna cierpliwość.

4. Napraw konfigurację DNS i sprawdź poprawność działania sieci.

2.5.Konfiguracja interfejsu za pomocą pakietu ip (10.1.1.k/16)

ip link set eth0 down

ip addr flush eth0

- ip addr
- ip link set eth0 up

Tu warto porównać wynik działania polecenia ifconfig i jeżeli nie wszystkie parametry (adres, maska, broadcast) konfiguracji są poprawne to powtórz poprawnie konfigurację interfejsu poleceniem ip.

Sprawdź łączność z pozostałymi członkami grupy i odczytaj wpisy w tablicy arp

ip neigh show

Ustaw konfigurację domyślnej bramy na adres 10.1.0.1.

ip route

ip route show

Sprawdź poprawność działania sieci.

2.6.Trasy datagramów

traceroute wp.pl

W jakim mieście są najprawdopodobniej zlokalizowane serwery portalu www.onet.pl?

traceroute www.onet.pl

Jakie jest opóźnienie traktu transatlantyckiego na trasie do serwera **microsoft.com**? Podpowiedź: obserwując trasę widać wyraźny wzrost czasu odpowiedzi kolejnych routerów.

traceroute microsoft.com

Interesujące może być też prześledzenie trasy na wschód np. do Japonii. Można wypróbować adres **www.metro.tokyo.jp**

traceroute www.metro.tokyo.jp

2.7.ICMP Redirect

Zmień bramę domyślną na 10.1.0.208

- ip route del default
- ip route

ip route show

W konfiguracji sytemu nigdzie nie występuje już informacja o istnieniu bramy 10.1.0.1.

- 1. Sprawdź trasę do dowolnego adresu
- 2. Wykonaj ping na ten adres (3-4 odpowiedzi)
- 3. Ponownie sprawdź trasę

Zauważ, że komputer pomija bramę domyślną 10.1.0.208 i przesyła pakiety przez bramę 10.1.0.1, która nigdzie nie występuje w jego konfiguracji. Jest to wynikiem optymalizacji tras w sieci lokalnej za pomocą mechanizmu ICMP Redirect.

Poleceniem ping z na adres jeszcze nie używany np. www.icm.edu.pl możesz zaobserwować pakiet ICMP Redirect pomiędzy pierwszymi odpowiedziami na na polecenie ping.

Który z routerów przesłał informację o krótszej trasie?

3. IPv6

3.1.Autokonfiguracja IPv6 Sprawdź adres autokonfiguracji IPv6 interfejsu

ip addr show

Warto tu porównać adres IPv6 autokonfiguracji z adresem MAC. Sprawdź łączność z własnym interfejsem po IPv6

ping6 fe80::....

Sprawdź łączność z sąsiednim komputerem (adres z ekranu sąsiedniego komputera):

ping6 fe80::....

Uwaga: polecenie zadziała dopiero po określeniu interfejsu łącza parametr -I eth0

3.2.Sąsiedztow IPv6

Sprawdź adresy sąsiadów używając adresu multicastowego łącza

ping6 -I eth0 ff02::1

Sprawdź wpisy w tablicy sąsiedztwa

ip -6 neigh show

Po jakim czasie od ostatniej transmisji wpisy sąsiedztwa zmieniają swój stan z REACHABLE?, a po jakim są usuwane?

3.3.Routing IPv6 (2000:g::k/64)

Dodaj do interfejsu adres o zasięgu globalnym

ip -6 addr add 2001:4070:11:4g00::k/64

Sprawdź łączność z kolegami w grupie

ping6 2001:4070:11:4g00::k

Warto zauważyć, że adresy o zasięgu globalnym podlegają normalnym zasadom routingu, co pozwala automatycznie ustalić interfejs wyjściowy i nie trzeba używać opcji – I. Sprawdź łączność z komputerami w innej grupie – powinno nie działać. Sprawdź dostępność routera

ping6 2001:4070:4g00::FFFF

Ustaw routing do pozostałych grup poprzez router 2000:g::FFFF

ip	-6	route	add		via	2001:4070:11:4g00::FFFF
ip	-6	route	add		via	2001:4070:11:4g00::FFFF
ip	-6	route	add	•••••	via	2001:4070:11:4g00::FFFF

Ponownie sprawdź łączność z komputerami ze wszystkich grup.

Czy ustawienie routingu domyślnego w zakresie IPv6 zapewni łączność ze wszystkimi grupami?

3.4.Tunelowanie IPv6 w IPv4

Aby umożliwić tunelowanie datagramów IPv6 w sieci IPv4 można tworzyć tunele pomiędzy określonymi lokalizacjami.

Przed wykonaniem ćwiczenia z tunelami należy wyczyścić tablicę routingu (najprościej wyłączając, a następnie włączając wszystkie używane interfejsy).

Przykład tunelu między grupami 1 i 2 zrealizowanego na komputerach PC04 i PC05 (konfiguracja dla PC04).

1. Włączenie przekazywania pakietów IP i IPv6

```
echo "1" > /proc/sys/net/ipv4/ip_forward
echo "1" > /proc/sys/net/ipv6/conf/all/forwarding
```

2. Utworzenie tunelu

ip tunnel add sit1 local 192.168.1.4 remote 192.168.2.5 mode sit
ttl 64

4. Ustalenie adresu i włączenie interfejsu sit0 (tunelu)

ip -6 addr add 2000:1::100/64 dev sit1
ip link set dev sit1 up

3. Ustawienie routingu do drugiej sieci przez tunel

ip -6 route add 2000:2::/64 dev sit1

Analogiczne postępujemy na drugim końcu tunelu (PC05):

```
echo "1" > /proc/sys/net/ipv4/ip_forward
echo "1" > /proc/sys/net/ipv6/conf/all/forwarding
ip tunnel add sit1 local 192.168.2.5 remote 192.168.1.4 mode sit
ttl 64
ip -6 addr add 2000:2::100/64 dev sit1
ip link set dev sit1 up
ip -6 route add 2000:1::/64 dev sit1
```

Pozostałe komputery w grupie 1 ustawiając jako bramę do sieci grupy drugiej 2000:1::100, a komputery grupy drugiej bramę 2000:2::100 do sieci grupy pierwszej uzyskają wzajemne połączenia po IPv6 pomimo, że transmisja pomiędzy grupami (routerami) odbywa się wyłącznie za pomocą protokołu IPv4.

Numer komputera k (1-18)	jest naklejony na obudowie komputera.
Grupa 1 to komputery 1-4	g=1

Grupa 2 to komputery 5-8 i 17-18	g=2
Grupa 3 to komputery 9-12 i 39-40	g=3
Grupa 4 to komputery 13-16	g=4