
The Domain Name System is basically a database of host information. Admittedly, you get a
lot with that: funny dotted names, networked name servers, a shadowy "name space." But
keep in mind that, in the end, the service DNS provides is information about internet hosts.

We've already covered some important aspects of DNS, including its client-server architecture
and the structure of the DNS database. However, we haven't gone into much detail, and we
haven't explained the nuts and bolts of DNS's operation.

In this chapter, we'll explain and illustrate the mechanisms that make DNS work. We'll also
introduce the terms you'll need to know to read the rest of the book (and to converse
intelligently with your fellow domain administrators).

First, though, let's take a more detailed look at concepts introduced in the previous chapter.
We'll try to add enough detail to spice it up a little.

2.1 The Domain Name Space
DNS's distributed database is indexed by domain names. Each domain name is essentially just
a path in a large inverted tree, called the domain name space. The tree's hierarchical structure,
shown in Figure 2.1, is similar to the structure of the UNIX filesystem. The tree has a single
root at the top.[1] In the UNIX filesystem, this is called the root directory, represented by a
slash ("/"). DNS simply calls it "the root." Like a filesystem, DNS's tree can branch any
number of ways at each intersection point, called a node. The depth of the tree is limited to
127 levels (a limit you're not likely to reach).

[1] Clearly this is a computer scientist's tree, not a botanist's.

Figure 2.1: The structure of the DNS name space

2.1.1 Domain Names

Each node in the tree has a text label (without dots) that can be up to 63 characters long. A
null (zero-length) label is reserved for the root. The full domain name of any node in the tree
is the sequence of labels on the path from that node to the root. Domain names are always
read from the node toward the root ("up" the tree), and with dots separating the names in the
path.

If the root node's label actually appears in a node's domain name, the name looks as though it
ends in a dot, as in "www.oreilly.com.". (It actually ends with a dot - the separator - and the
root's null label.) When the root node's label appears by itself, it is written as a single dot, ".",
for convenience. Consequently, some software interprets a trailing dot in a domain name to
indicate that the domain name is absolute. An absolute domain name is written relative to the
root, and unambiguously specifies a node's location in the hierarchy. An absolute domain
name is also referred to as a fully qualified domain name, often abbreviated FQDN. Names
without trailing dots are sometimes interpreted as relative to some domain other than the root,
just as directory names without a leading slash are often interpreted as relative to the current
directory.

DNS requires that sibling nodes - nodes that are children of the same parent - have different
labels. This restriction guarantees that a domain name uniquely identifies a single node in the
tree. The restriction really isn't a limitation, because the labels only need to be unique among
the children, not among all the nodes in the tree. The same restriction applies to the UNIX
filesystem: You can't give two sibling directories the same name. Just as you can't have two
hobbes.pa.ca.us nodes in the name space, you can't have two /usr/bin directories (Figure 2.2).
You can, however, have both a hobbes.pa.ca.us node and a hobbes.lg.ca.us, as you can have
both a /bin directory and a /usr/bin directory.

Figure 2.2: Ensuring uniqueness in domain names and in UNIX pathnames

2.1.2 Domains

A domain is simply a subtree of the domain name space. The domain name of a domain is the
same as the domain name of the node at the very top of the domain. So, for example, the top
of the purdue.edu domain is a node named purdue.edu, as shown in Figure 2.3.

Figure 2.3: The purdue.edu domain

Likewise, in a filesystem, at the top of the /usr directory, you'd expect to find a node called
/usr, as shown in Figure 2.4.

Figure 2.4: The /usr directory

Any domain name in the subtree is considered a part of the domain. Because a domain name
can be in many subtrees, a domain name can also be in many domains. For example, the
domain name pa.ca.us is part of the ca.us domain and also part of the us domain, as shown in
Figure 2.5.

Figure 2.5: A node in multiple domains

So in the abstract, a domain is just a subtree of the domain name space. But if a domain is
simply made up of domain names and other domains, where are all the hosts? Domains are
groups of hosts, right?

The hosts are there, represented by domain names. Remember, domain names are just indexes
into the DNS database. The "hosts" are the domain names that point to information about
individual hosts. And a domain contains all the hosts whose domain names are within the
domain. The hosts are related logically, often by geography or organizational affiliation, and

not necessarily by network or address or hardware type. You might have ten different hosts,
each of them on a different network and each one perhaps even in a different country, all in
the same domain.[2]

[2] One note of caution: Don't confuse domains in the Domain Name System with domains in
Sun's Network Information Service (NIS). Though an NIS domain also refers to a group of
hosts, and both types of domains have similarly structured names, the concepts are quite
different. NIS uses hierarchical names, but the hierarchy ends there: hosts in the same NIS
domain share certain data about hosts and users, but they can't navigate the NIS name space to
find data in other NIS domains. NT domains, which provide account management and
security services, also don't have any relationship to DNS domains.

Domain names at the leaves of the tree generally represent individual hosts, and they may
point to network addresses, hardware information, and mail routing information. Domain
names in the interior of the tree can name a host and can point to information about the
domain. Interior domain names aren't restricted to one or the other. They can represent both
the domain they correspond to and a particular host on the network. For example, hp.com is
both the name of the Hewlett-Packard Company's domain and the domain name of a host that
runs HP's main web server.

The type of information retrieved when you use a domain name depends on the context in
which you use it. Sending mail to someone at hp.com would return mail routing information,
while telneting to the domain name would look up the host information (in Figure 2.6, for
example, hp.com's IP address).[3]

[3] The terms domain and subdomain are often used interchangeably, or nearly so, in DNS
and BIND documentation. Here, we use subdomain only as a relative term: a domain is a
subdomain of another domain if the root of the subdomain is within the domain.

Figure 2.6: An interior node with both host and structural data

A simple way of deciding whether a domain is a subdomain of another domain is to compare
their domain names. A subdomain's domain name ends with the domain name of its parent
domain. For example, the domain la.tyrell.com must be a subdomain of tyrell.com because
la.tyrell.com ends with tyrell.com. Similarly, it's a subdomain of com, as is tyrell.com.

Besides being referred to in relative terms, as subdomains of other domains, domains are
often referred to by level. On mailing lists and in Usenet newsgroups, you may see the terms

top-level domain or second-level domain bandied about. These terms simply refer to a
domain's position in the domain name space:

• A top-level domain is a child of the root.
• A first-level domain is a child of the root (a top-level domain).
• A second-level domain is a child of a first-level domain, and so on.

2.2 The Internet Domain Name Space
So far, we've talked about the theoretical structure of the domain name space and what sorts
of data are stored in it, and we've even hinted at the types of names you might find in it with
our (sometimes fictional) examples. But this won't help you decode the domain names you
see on a daily basis on the Internet.

The Domain Name System doesn't impose many rules on the labels in domain names, and it
doesn't attach any particular meaning to the labels at a particular level. When you manage a
part of the domain name space, you can decide on your own semantics for your domain
names. Heck, you could name your subdomains A through Z and no one would stop you
(though they might strongly recommend against it).

The existing Internet domain name space, however, has some self-imposed structure to it.
Especially in the upper-level domains, the domain names follow certain traditions (not rules,
really, as they can be and have been broken.) These traditions help domain names from
appearing totally chaotic. Understanding these traditions is an enormous asset if you're trying
to decipher a domain name.

2.2.1 Top-Level Domains

The original top-level domains divided the Internet domain name space organizationally into
seven domains:

com

Commercial organizations, such as Hewlett-Packard (hp.com), Sun Microsystems
(sun.com), and IBM (ibm.com)

edu

Educational organizations, such as U.C. Berkeley (berkeley.edu) and Purdue
University (purdue.edu)

gov

Government organizations, such as NASA (nasa.gov) and the National Science
Foundation (nsf.gov)

mil

Military organizations, such as the U.S. Army (army.mil) and Navy (navy.mil)

net

Networking organizations, such as NSFNET (nsf.net)

org

Noncommercial organizations, such as the Electronic Frontier Foundation (eff.org)

int

International organizations, such as NATO (nato.int)

Another top-level domain called arpa was originally used during the ARPAnet's transition
from host tables to DNS. All ARPAnet hosts originally had host names under arpa, so they
were easy to find. Later, they moved into various subdomains of the organizational top-level
domains. However, the arpa domain remains in use in a way you'll read about later.

You may notice a certain nationalistic prejudice in the examples: all are primarily U.S.
organizations. That's easier to understand - and forgive - when you remember that the Internet
began as the ARPAnet, a U.S.-funded research project. No one anticipated the success of the
ARPAnet, or that it would eventually become as international as the Internet is today.

Today, these original domains are called generic top-level domains, or gTLDs. By the time
you read this, we may have quite a few more of these, such as firm, shop, web, and nom, to
accommodate the rapid expansion of the Internet and the need for more domain name "space."
For more information on a proposal to create new gTLDs, see http://www.gtld-mou.org/.

To accommodate the internationalization of the Internet, the implementers of the Internet
name space compromised. Instead of insisting that all top-level domains describe
organizational affiliation, they decided to allow geographical designations, too. New top-level
domains were reserved (but not necessarily created) to correspond to individual countries.
Their domain names followed an existing international standard called ISO 3166.[4] ISO
3166 establishes official, two-letter abbreviations for every country in the world. We've
included the current list of top-level domains as Appendix C, Top-Level Domains, of this
book.

[4] Except for Great Britain. According to ISO 3166 and Internet tradition, Great Britain's
top-level domain name should be gb. Instead, most organizations in Great Britain and
Northern Ireland (i.e., the United Kingdom) use the top-level domain name uk. They drive on
the wrong side of the road, too.

2.2.2 Further Down

Within these top-level domains, the traditions and the extent to which they are followed vary.
Some of the ISO 3166 top-level domains closely follow the U.S.'s original organizational
scheme. For example, Australia's top-level domain, au, has subdomains such as edu.au and
com.au. Some other ISO 3166 top-level domains follow the uk domain's lead and have
subdomains such as co.uk for corporations and ac.uk for the academic community. In most
cases, however, even these geographically-oriented top-level domains are divided up
organizationally.

That's not true of the us top-level domain, however. The us domain has fifty subdomains that
correspond to - guess what? - the fifty U.S. states.[5] Each is named according to the standard
two-letter abbreviation for the state - the same abbreviation standardized by the U.S. Postal
Service. Within each state's domain, the organization is still largely geographical: most
subdomains correspond to individual cities. Beneath the cities, the subdomains usually
correspond to individual hosts.

[5] Actually, there are a few more domains under us: one for Washington, D.C., one for
Guam, and so on.

2.2.3 Reading Domain Names

Now that you know what most top-level domains represent and how their name spaces are
structured, you'll probably find it much easier to make sense of most domain names. Let's
dissect a few for practice:

lithium.cchem.berkeley.edu

You've got a head start on this one, as we've already told you that berkeley.edu is U.C.
Berkeley's domain. (Even if you didn't already know that, though, you could have
inferred that the name probably belongs to a U.S. university because it's in the top-
level edu domain.) cchem is the College of Chemistry's subdomain of berkeley.edu.
Finally, lithium is the name of a particular host in the domain - and probably one of
about a hundred or so, if they've got one for every element.

winnie.corp.hp.com

This example is a bit harder, but not much. The hp.com domain in all likelihood
belongs to the Hewlett-Packard Company (in fact, we gave you this earlier, too). Their
corp subdomain is undoubtedly their corporate headquarters. And winnie is probably
just some silly name someone thought up for a host.

fernwood.mpk.ca.us

Here you'll need to use your understanding of the us domain. ca.us is obviously
California's domain, but mpk is anybody's guess. In this case, it would be hard to know
that it's Menlo Park's domain unless you knew your San Francisco Bay Area
geography. (And no, it's not the same Menlo Park that Edison lived in - that one's in
New Jersey.)

daphne.ch.apollo.hp.com

We've included this example just so you don't start thinking that all domain names
have only four labels. apollo.hp.com is the former Apollo Computer subdomain of the
hp.com domain. (When HP acquired Apollo, it also acquired Apollo's Internet domain,
apollo.com, which became apollo.hp.com.) ch.apollo.hp.com is Apollo's Chelmsford,
Massachusetts, site. And daphne is a host at Chelmsford.

2.3 Delegation

Remember that one of the main goals of the design of the Domain Name System was to
decentralize administration? This is achieved through delegation. Delegating domains works a
lot like delegating tasks at work. A manager may break up a large project into smaller tasks
and delegate responsibility for each of these tasks to different employees.

Likewise, an organization administering a domain can divide it into subdomains. Each of
those subdomains can be delegated to other organizations. This means that an organization
becomes responsible for maintaining all the data in that subdomain. It can freely change the
data and even divide its subdomain up into more subdomains and delegate those. The parent
domain contains only pointers to sources of the subdomain's data so that it can refer queriers
there. The domain stanford.edu, for example, is delegated to the folks at Stanford who run the
university's networks (Figure 2.7).

Figure 2.7: stanford.edu is delegated to Stanford University

Not all organizations delegate away their whole domain, just as not all managers delegate all
their work. A domain may have several subdomains and also contain hosts that don't belong
in the subdomains. For example, the Acme Corporation (it supplies a certain coyote with most
of his gadgets), which has a division in Rockaway and its headquarters in Kalamazoo, might
have a rockaway.acme.com subdomain and a kalamazoo.acme.com subdomain. However, the
few hosts in the Acme sales offices scattered throughout the U.S. would fit better under
acme.com than under either subdomain.

We'll explain how to create and delegate subdomains later. For now, it's only important that
you understand that the term delegation refers to assigning responsibility for a subdomain to
another organization.

2.4 Name Servers and Zones
The programs that store information about the domain name space are called name servers.
Name servers generally have complete information about some part of the domain name
space, called a zone, which they load from a file or from another name server. The name
server is then said to have authority for that zone. Name servers can be authoritative for
multiple zones, too.

The difference between a zone and a domain is important, but subtle. All top-level domains,
and many domains at the second level and lower, like berkeley.edu and hp.com, are broken
into smaller, more manageable units by delegation. These units are called zones. The edu
domain, shown in Figure 2.8, is divided into many zones, including the berkeley.edu zone, the
purdue.edu zone, and the nwu.edu zone. At the top of the domain, there's also an edu zone. It's
natural that the folks who run edu would break up the edu domain: otherwise, they'd have to
manage the berkeley.edu subdomain themselves. It makes much more sense to delegate
berkeley.edu to Berkeley. What's left for the folks who run edu? The edu zone, which would
contain mostly delegation information to subdomains of edu.

Figure 2.8: The edu domain broken into zones

The berkeley.edu subdomain is, in turn, broken up into multiple zones by delegation, as
shown in Figure 2.9. There are delegated subdomains called cc, cs, ce, me, and more. Each of
these subdomains is delegated to a set of name servers, some of which are also authoritative
for berkeley.edu. However, the zones are still separate, and may have a totally different group
of authoritative name servers.

Figure 2.9: The berkeley.edu domain broken into zones

A zone contains the domain names that the domain with the same domain name contains,
except for domain names in delegated subdomains. For example, the top-level domain ca (for
Canada) may have the subdomains ab.ca, on.ca, and qc.ca, for the provinces Alberta, Ontario,
and Quebec. Authority for the ab.ca, on.ca, and qc.ca domains may be delegated to name
servers in each of the provinces. The domain ca contains all the data in ca plus all the data in
ab.ca, on.ca, and qc.ca. But the zone ca contains only the data in ca (see Figure 2.10), which
is probably mostly pointers to the delegated subdomains.

If a subdomain of the domain isn't delegated away, however, the zone contains the domain
names and data in the subdomain. So the bc.ca and sk.ca (British Columbia and
Saskatchewan) subdomains of the ca domain may exist, but might not be delegated. (Perhaps
the provincial authorities in B.C. and Saskatchewan aren't yet ready to manage their
subdomains, but the authorities running the top-level ca domain want to preserve the
consistency of the name space and implement subdomains for all the Canadian provinces right
away.) In this case, the zone ca has a ragged bottom edge, containing bc.ca and sk.ca, but not
the other ca subdomains, as shown in Figure 2.11.

Figure 2.10: The domain ca...

Figure 2.11: ...versus the zone ca

Now it's clear why name servers load zones instead of domains: a domain might contain more
information than the name server would need.[6] A domain could contain data delegated to
other name servers. Since a zone is bounded by delegation, it will never include delegated
data.

[6] Imagine if a root name server loaded the root domain instead of the root zone: it would be
loading the entire name space!

If you're just starting out, however, your domain probably won't have any subdomains. In this
case, since there's no delegation going on, your domain and your zone contain the same data.

2.4.1 Delegating Domains

Even though you may not need to delegate parts of your domain just yet, it's helpful to
understand a little more about how the process of delegating a domain works. Delegation, in

the abstract, involves assigning responsibility for some part of your domain to another
organization. What really happens, however, is the assignment of authority for your
subdomains to different name servers. (Note that we said "name servers," not just "name
server.")

Your data, instead of containing information about the subdomain you've delegated, includes
pointers to the name servers that are authoritative for that subdomain. Now if one of your
name servers is asked for data in the subdomain, it can reply with a list of the right name
servers to talk to.

2.4.2 Types of Name Servers

The DNS specs define two types of name servers: primary masters and secondary masters. A
primary master name server for a zone reads the data for the zone from a file on its host. A
secondary master name server for a zone gets the zone data from another name server that is
authoritative for the zone, called its master server. Quite often, the master server is the zone's
primary master, but that's not required: a secondary master can load zone data from another
secondary. When a secondary starts up, it contacts its master name server and, if necessary,
pulls the zone data over. This is referred to as a zone transfer. Nowadays, the preferred term
for a secondary master name server is a slave, though many people (and much software,
including Microsoft's DNS Manager) still call them secondaries.

Both the primary master and slave name servers for a zone are authoritative for that zone.
Despite the somewhat disparaging name, slaves aren't second-class name servers. DNS
provides these two types of name servers to make administration easier. Once you've created
the data for your zone and set up a primary master name server, you don't need to fool with
copying that data from host to host to create new name servers for the zone. You simply set
up slave name servers that load their data from the primary master for the zone. Once they're
set up, the slaves will transfer new zone data when necessary.

Slave name servers are important because it's a good idea to set up more than one name server
for any given zone. You'll want more than one for redundancy, to spread the load around, and
to make sure that all the hosts in the zone have a name server close by. Using slave name
servers makes this administratively workable.

Calling a particular name server a primary master name server or a slave name server is a
little imprecise, though. We mentioned earlier that a name server can be authoritative for
more than one zone. Similarly, a name server can be a primary master for one zone and a
slave for another. Most name servers, however, are either primary for most of the zones they
load or slave for most of the zones they load. So if we call a particular name server a primary
or a slave, we mean that it's the primary master or a slave for most of the zones it loads.

2.4.3 Data Files

The files from which primary master name servers load their zone data are called, simply
enough, zone data files or just data files. We often refer to them as db files, short for database
files. Slave name servers can also load their zone data from data files. Slaves are usually
configured to back up the zone data they transfer from a master name server to data files. If
the slave is later killed and restarted, it will read the backup data files first, then check to see

whether the data are current. This both obviates the need to transfer the zone data if it hasn't
changed and provides a source of the data if the master is down.

The data files contain resource records that describe the zone. The resource records describe
all the hosts in the zone and mark any delegation of subdomains. BIND also allows special
directives to include the contents of other data files in a data file, much like the #include
statement in C programming.

2.5 Resolvers
Resolvers are the clients that access name servers. Programs running on a host that need
information from the domain name space use the resolver. The resolver handles:

• Querying a name server
• Interpreting responses (which may be resource records or an error)
• Returning the information to the programs that requested it

In BIND, the resolver is just a set of library routines that is linked into programs such as
telnet and ftp. It's not even a separate process. It has the smarts to put together a query, to
send it and wait for an answer, and to resend the query if it isn't answered, but that's about all.
Most of the burden of finding an answer to the query is placed on the name server. The DNS
specs call this kind of resolver a stub resolver.

Other implementations of DNS have had smarter resolvers, which can do more sophisticated
things such as build up a cache of information already retrieved from name servers.[7] But
these aren't nearly as common as the stub resolver implemented in BIND.

2.6 Resolution
Name servers are adept at retrieving data from the domain name space. They have to be,
given the limited intelligence of some resolvers. Not only can they give you data about zones
for which they're authoritative, they can also search through the domain name space to find
data for which they're not authoritative. This process is called name resolution or simply
resolution.

Because the name space is structured as an inverted tree, a name server needs only one piece
of information to find its way to any point in the tree: the domain names and addresses of the
root name servers (is that more than one piece?). A name server can issue a query to a root
name server for any name in the domain name space, and the root name server will start the
name server on its way.

2.6.1 Root Name Servers

The root name servers know where there are authoritative name servers for each of the top-
level domains. (In fact, most of the root name servers are authoritative for the generic top-
level domains.) Given a query about any domain name, the root name servers can at least
provide the names and addresses of the name servers that are authoritative for the top-level
domain that the domain name is in. And the top-level name servers can provide the list of
name servers that are authoritative for the second-level domain that the domain name is in.

Each name server queried gives the querier information about how to get "closer" to the
answer it's seeking, or it provides the answer itself.

The root name servers are clearly important to resolution. Because they're so important, DNS
provides mechanisms - such as caching, which we'll discuss a little later - to help offload the
root name servers. But in the absence of other information, resolution has to start at the root
name servers. This makes the root name servers crucial to the operation of DNS; if all the
Internet root name servers were unreachable for an extended period, all resolution on the
Internet would fail. To protect against this, the Internet has thirteen root name servers (as of
this writing) spread across different parts of the network. Two are on the MILNET, the U.S.
military's portion of the Internet; one is on SPAN, NASA's internet; two are in Europe; and
one is in Japan.

Being the focal point for so many queries keeps the roots busy; even with thirteen, the traffic
to each root name server is very high. A recent informal poll of root name server
administrators showed some roots receiving thousands of queries per second.

Despite the load placed on root name servers, resolution on the Internet works quite well.
Figure 2.12 shows the resolution process for the address of a real host in a real domain,
including how the process corresponds to traversing the domain name space tree.

Figure 2.12: Resolution of girigiri.gbrmpa.gov.au on the Internet

The local name server queries a root name server for the address of girigiri.gbrmpa.gov.au
and is referred to the au name servers. The local name server asks an au name server the same

question, and is referred to the gov.au name servers. The gov.au name server refers the local
name server to the gbrmpa.gov.au name servers. Finally, the local name server asks a
gbrmpa.gov.au name server for the address and gets the answer.

2.6.2 Recursion

You may have noticed a big difference in the amount of work done by the name servers in the
previous example. Four of the name servers simply returned the best answer they already
had - mostly referrals to other name servers - to the queries they received. They didn't have to
send their own queries to find the data requested. But one name server - the one queried by
the resolver - had to follow successive referrals until it received an answer.

Why couldn't the local name server simply have referred the resolver to another name server?
Because a stub resolver wouldn't have had the intelligence to follow a referral. And how did
the name server know not to answer with a referral? Because the resolver issued a recursive
query.

Queries come in two flavors, recursive and iterative, also called nonrecursive. Recursive
queries place most of the burden of resolution on a single name server. Recursion, or
recursive resolution, is just a name for the resolution process used by a name server when it
receives recursive queries.

Iteration, or iterative resolution, on the other hand, refers to the resolution process used by a
name server when it receives iterative queries.

In recursion a resolver sends a recursive query to a name server for information about a
particular domain name. The queried name server is then obliged to respond with the
requested data or with an error stating that data of the requested type don't exist or that the
domain name specified doesn't exist.[8] The name server can't just refer the querier to a
different name server, because the query was recursive.

[8] The BIND 8 name server can be configured to refuse recursive queries; see Chapter 10,
Advanced Features and Security, for how and why you'd want to do this.

If the queried name server isn't authoritative for the data requested, it will have to query other
name servers to find the answer. It could send recursive queries to those name servers, thereby
obliging them to find the answer and return it (and passing the buck). Or it could send
iterative queries and possibly be referred to other name servers "closer" to the domain name
it's looking for. Current implementations are polite and do the latter, following the referrals
until an answer is found.[9]

[9] The exception is a name server configured to forward all unresolved queries to a
designated name server, called a forwarder. See Chapter 10 for more information on using
forwarders.

A name server that receives a recursive query that it can't answer itself will query the "closest
known" name servers. The closest known name servers are the servers authoritative for the
zone closest to the domain name being looked up. For example, if the name server receives a
recursive query for the address of the domain name girigiri.gbrmpa.gov.au, it will first check
whether it knows the name servers for girigiri.gbrmpa.gov.au. If it does, it will send the query

to one of them. If not, it will check whether it knows the name servers for gbrmpa.gov.au, and
after that gov.au, and then au. The default, where the check is guaranteed to stop, is the root
zone, since every name server knows the domain names and addresses of the root name
servers.

Using the closest known name servers ensures that the resolution process is as short as
possible. A berkeley.edu name server receiving a recursive query for the address of
waxwing.ce.berkeley.edu shouldn't have to consult the root name servers; it can simply follow
delegation information directly to the ce.berkeley.edu name servers. Likewise, a name server
that has just looked up a domain name in ce.berkeley.edu shouldn't have to start resolution at
the roots to look up another ce.berkeley.edu (or berkeley.edu) domain name; we'll show how
this works in the upcoming section on caching.

The name server that receives the recursive query always sends the same query that the
resolver sends it, for example, for the address of waxwing.ce.berkeley.edu. It never sends
explicit queries for the name servers for ce.berkeley.edu or berkeley.edu, though this
information is also stored in the name space. Sending explicit queries could cause problems:
There may be no ce.berkeley.edu name servers (that is, ce.berkeley.edu may be part of the
berkeley.edu zone). Also, it's always possible that an edu or berkeley.edu name server would
know waxwing.ce.berkeley.edu's address. An explicit query for the berkeley.edu or
ce.berkeley.edu name servers would miss this information.

2.6.3 Iteration

Iterative resolution, on the other hand, doesn't require nearly as much work on the part of the
queried name server. In iterative resolution, a name server simply gives the best answer it
already knows back to the querier. No additional querying is required. The queried name
server consults its local data (including its cache, which we're about to talk about), looking for
the data requested. If it doesn't find the data there, it makes its best attempt to give the querier
data that will help it continue the resolution process. Usually these are the domain names and
addresses of the closest known name servers.

What this amounts to is a resolution process that, taken as a whole, looks like Figure 2.13.

Figure 2.13: The resolution process

A resolver queries a local name server, which then queries a number of other name servers in
pursuit of an answer for the resolver. Each name server it queries refers it to another name
server that is authoritative for a zone further down in the name space and closer to the domain
name sought. Finally, the local name server queries the authoritative name server, which
returns an answer.

2.6.4 Mapping Addresses to Names

One major piece of functionality missing from the resolution process as explained so far is
how addresses get mapped back to names. Address-to-name mapping is used to produce
output that is easier for humans to read and interpret (in log files, for instance). It's also used
in some authorization checks. UNIX hosts map addresses to domain names to compare
against entries in .rhosts and hosts.equiv files, for example. When using host tables, address-
to-name mapping is trivial. It requires a straightforward sequential search through the host
table for an address. The search returns the official host name listed. In DNS, however,
address-to-name mapping isn't so simple. Data, including addresses, in the domain name
space are indexed by name. Given a domain name, finding an address is relatively easy. But
finding the domain name that maps to a given address would seem to require an exhaustive
search of the data attached to every domain name in the tree.

Actually, there's a better solution that's both clever and effective. Because it's easy to find data
once you're given the domain name that indexes that data, why not create a part of the domain
name space that uses addresses as labels? In the Internet's domain name space, this portion of
the name space is the in-addr.arpa domain.

Nodes in the in-addr.arpa domain are labelled after the numbers in the dotted-octet
representation of IP addresses. (Dotted-octet representation refers to the common method of
expressing 32-bit IP addresses as four numbers in the range 0 to 255, separated by dots.) The
in-addr.arpa domain, for example, could have up to 256 subdomains, one corresponding to
each possible value in the first octet of an IP address. Each of these subdomains could have up

to 256 subdomains of its own, corresponding to the possible values of the second octet.
Finally, at the fourth level down, there are resource records attached to the final octet giving
the full domain name of the host or network at that IP address. That makes for an awfully big
domain: in-addr.arpa, shown in Figure 2.14, is roomy enough for every IP address on the
Internet.

Figure 2.14: addr.arpa domain

Note that when read in a domain name, the IP address appears backward because the name is
read from leaf to root. For example, if winnie.corp.hp.com's IP address is 15.16.192.152, the
corresponding in-addr.arpa subdomain is 152.192.16.15.in-addr.arpa, which maps back to
the domain name winnie.corp.hp.com.

IP addresses could have been represented the opposite way in the name space, with the first
octet of the IP address at the bottom of the in-addr.arpa domain. That way, the IP address
would have read correctly (forward) in the domain name.

IP addresses are hierarchical, however, just like domain names. Network numbers are doled
out much as domain names are, and administrators can then subnet their address space and
further delegate numbering. The difference is that IP addresses get more specific from left to
right, while domain names get less specific from left to right. Figure 2.15 shows what we
mean.

Figure 2.15: Hierarchical names and addresses

Making the first octets in the IP address appear highest in the tree gives administrators the
ability to delegate authority for in-addr.arpa domains along network lines. For example, the
15.in-addr.arpa domain, which contains the reverse mapping information for all hosts whose
IP addresses start with 15, can be delegated to the administrators of network 15.0.0.0. This
would be impossible if the octets appeared in the opposite order. If the IP addresses were
represented the other way around, 15.in-addr.arpa would consist of every host whose IP
address ended with 15 - not a practical domain to try to delegate.

2.6.5 Inverse Queries

The in-addr.arpa name space is clearly only useful for IP address-to-domain name mapping.
Searching for a domain name that indexes an arbitrary piece of data - something besides an
address - in the domain name space would require another specialized name space like in-
addr.arpa or an exhaustive search.

That exhaustive search is to some extent possible, and it's called an inverse query. An inverse
query is a search for the domain name that indexes a given datum. It's processed solely by the
name server receiving the query. That name server searches all of its local data for the item
sought and returns the domain name that indexes it, if possible. If it can't find the data, it gives
up. No attempt is made to forward the query to another name server.

Because any one name server only knows about part of the overall domain name space, an
inverse query is never guaranteed to return an answer. For example, if a name server receives
an inverse query for an IP address it knows nothing about, it can't return an answer, but it also
doesn't know that the IP address doesn't exist, because it only holds part of the DNS database.
What's more, the implementation of inverse queries is optional according to the DNS
specification; BIND 4.9.7 still contains the code that implements inverse queries, but it's
commented out by default. BIND 8 no longer includes that code at all, though it does
recognize inverse queries and can make up fake responses to them.[10] That's fine with us,
because very little software (such as archaic versions of nslookup) actually still uses inverse
queries.

2.7 Caching
The whole resolution process may seem awfully convoluted and cumbersome to someone
accustomed to simple searches through the host table. Actually, it's usually quite fast. One of
the features that speeds it up considerably is caching.

A name server processing a recursive query may have to send out quite a few queries to find
an answer. However, it discovers a lot of information about the domain name space as it does
so. Each time it's referred to another list of name servers, it learns that those name servers are
authoritative for some zone, and it learns the addresses of those servers. And, at the end of the

resolution process, when it finally finds the data the original querier sought, it can store that
data for future reference, too. With version 4.9 and all version 8 BINDs, name servers even
implement negative caching: if an authoritative name server responds to a query with an
answer that says the domain name or data type in the query doesn't exist, the local name
server will temporarily cache that information, too. Name servers cache all of this data to help
speed up successive queries. The next time a resolver queries the name server for data about a
domain name the name server knows something about, the process is shortened quite a bit.
The name server may have cached the answer, positive or negative, in which case it simply
returns the answer to the resolver. Even if it doesn't have the answer cached, it may have
learned the identities of the name servers that are authoritative for the zone the domain name
is in and be able to query them directly.

For example, say our name server has already looked up the address of eecs.berkeley.edu. In
the process, it cached the names and addresses of the eecs.berkeley.edu and berkeley.edu
name servers (plus eecs.berkeley.edu's IP address). Now if a resolver were to query our name
server for the address of baobab.cs.berkeley.edu, our name server could skip querying the root
name servers. Recognizing that berkeley.edu is the closest ancestor of baobab.cs.berkeley.edu
that it knows about, our name server would start by querying a berkeley.edu name server, as
shown in Figure 2.16. On the other hand, if our name server had discovered that there was no
address for eecs.berkeley.edu, the next time it received a query for the address, it could simply
have responded appropriately from its cache.

Figure 2.16: Resolving baobab.cs.berkeley.edu

In addition to speeding up resolution, caching prevents us from having to query the root name
servers again. This means that we're not as dependent on the roots, and they won't suffer as
much from all our queries.

2.7.1 Time to Live

Name servers can't cache data forever, of course. If they did, changes to that data on the
authoritative name servers would never reach the rest of the network. Remote name servers
would just continue to use cached data. Consequently, the administrator of the zone that
contains the data decides on a time to live, or TTL, for the data. The time to live is the amount
of time that any name server is allowed to cache the data. After the time to live expires, the
name server must discard the cached data and get new data from the authoritative name
servers. This also applies to negatively cached data; a name server must time out a negative
answer after a period, too, in case new data has been added on the authoritative name servers.
However, the time to live for negatively cached data isn't tunable by the domain
administrator; it's hardcoded to ten minutes.

Deciding on a time to live for your data is essentially deciding on a trade-off between
performance and consistency. A small TTL will help ensure that data about your domain is
consistent across the network, because remote name servers will time it out more quickly and
be forced to query your authoritative name servers more often for new data. On the other
hand, this will increase the load on your name servers and lengthen resolution time for
information in your domain, on the average.

A large TTL will shorten the average time it takes to resolve information in your domain
because the data can be cached longer. The drawback is that your information will be
inconsistent for a longer time if you make changes to your data on your name servers.

Enough of this theory - I'll bet you're antsy to get on with this. There's some homework
necessary before you can set up your domain and your name servers, though, and we'll assign
it in the next chapter.

